Course
ENGR 12800 – Engineering Fundamentals II

Type of Course
Required for all undergraduate engineering programs

Catalog Description
This second course in engineering fundamentals continues the introduction to engineering applications, analysis, experimentation, and design with a focus on the application of mathematical analysis. The course’s project studio emphasizes team work, project management, and communication with significant writing and speaking. A laboratory component introduces engineering computer tools for manipulation of data sets and structured programming. The course continues the overview of engineering majors and the engineering profession.

Credits
4

Contact Hours
2 Lecture, 2.5 Project Studio, 2.5 Laboratory

Prerequisite Courses
ENGR 12700 Engineering Fundamentals I

Corequisite Courses
MA 165, ENG W131 or COM 114

Prerequisites by Topics
Trigonometry
College entrance level of writing, speaking and critical reading
Application of algebra, trigonometry, descriptive statistics and simple derivatives in engineering
Preparation of graphs, charts, tables and memos for communication
Use of CAD and Spreadsheet software

Textbook
None Required

Curriculum Outcomes for First-year Engineering (2-term/all components)
After completing the first-year engineering curriculum students should be able to:
1. solve and document the solution of problems involving elements or configurations not previously encountered (e.g. a new geometric arrangement, a new term to include in an analysis, a new type of starting condition) (e)
2. solve problems using multiple approaches including (e.g., equations including varied analytic approaches, diagrams, formal solution steps or simple computer programs) (e)
3. describe the broad nature of various engineering majors and the engineering profession and use this information to make appropriate career choices (f)
Course Objectives

This course seeks to prepare students for the study of engineering through learning how to:
1. effectively approach the study of engineering,
2. rigorously apply of mathematical techniques to engineering problems particularly complex numbers, sinusoidal waves, Boolean logic, simple integration and introductory differential equations,
3. carry out a disciplined engineering project,
4. prepare effective Technical Memo Reports and oral presentations, and
5. use modern software tools to solve problems with well-structured and clearly documented programs.

Course Learning Outcomes

After successfully completing this course, students should be able to:

Analysis & Success Outcomes
A.1. formulate and solve engineering problems using complex numbers (a)
A.2. formulate and solve engineering problems using sign waves & frequency (a)
A.3. formulate and solve engineering problems using integration (a)
A.4. formulate and solve engineering problems using Boolean Logic (a)
A.5. formulate and solve engineering problems using log graphing and transformations (a)
A.6. formulate and solve engineering problems using simple differential equations (a)

Project Outcomes
B.1. plan and carry out a disciplined design project following a systematic design process (c)
B.2. utilize appropriate analytical and computer tools in project work (k)
B.3. write a precise and effective Technical Report Memo. Write clear Abstract, Methodology, Recommendations, and Conclusions sections (g)
B.4. prepare and deliver an effective oral technical presentation (g)
B.5. organize an effective team including setting ground rules, project planning, and task management; explain and utilize effective group processes (d)

Computer Outcomes
C.1. solve engineering problems using computer tools (k)
C.2. apply arrays and array manipulations (k)
C.3. use and explain text variables and ASCII text files (k)
C.4. write a function with multiple inputs and outputs at the command line (k)
C.5. write a function that results in a non-numerical output (k)
C.6. write programs using logical expressions and conditional statements (k)
C.7. write programs using loop structures (k)
C.8. fit data that follows linear, exponential or power law forms (k)
C.9. properly communicate a solution based on computer calculation or program (g)

Lecture Topics
1. Review of engineering analysis from ENGR 12700
2. Engineering applications of complex numbers
3. Engineering applications of sinusoids and waves
4. Engineering applications of simple integration
5. Engineering applications of Boolean Logic
6. Engineering applications of empirical modeling (linear-in-parameters)
7. Engineering applications of simple differential equations
8. Engineering majors & jobs

Studio Topics
1. Design process
2. Writing technical memo reports
3. Writing abstract, methodology, recommendations, and conclusions sections
4. Oral technical presentations
5. Teamwork

Laboratory Topics
1. Working with arrays and files in computer programs
2. Writing computer functions and sub-functions
3. Writing programs with branching
4. Writing programs with loops
5. Fitting simple empirical models
6. Documenting a computer problem solution

Computer Usage
High

Laboratory Experience
Low

Design Experience
High

Coordinator
S. Scott Moor, Ph.D., P.E., moors@ipfw.edu (260) 481-6020

Date
January 12, 2018